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We mentioned the general form of channel coding over BSC.

In particular, we looked at the general form of block 
codes.

(n,k) codes: n-bit blocks are used to conveys k-info-bit blocks
Assume n > k

Rate: .

k bits k bits k bits n bits n bits n bits

Recall that the capacity of BSC is .
For  , we also have  . 
Achievable rate is < 1.

Max. achievable rate

Code length
“Dimension” of the code

codewords messages
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= the collection of all codewords for the code considered

Each n-bit block is selected from .

The message (data block) has k bits, 
so there are 2k possibilities.

A reasonable code would not assign the same codeword to 
different messages.

Therefore, there are 2k (distinct) codewords in .

Ex. Repetition code with n = 3



GF(2)
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The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication of 
bits:

These are  modulo-2 addition and modulo-2 multiplication, 
respectively. 
The operations are the same as the exclusive-or (XOR) 
operation and the AND operation.

We will simply call them addition and multiplication so that we can 
use a matrix formalism to define the code.

The two-element set {0, 1} together with this definition of 
addition and multiplication is a number system called a finite 
field or a Galois field, and is denoted by the label GF(2).

GF(2)
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The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication of 
bits:

Note that x x
x x
x x

x xThe above property implies

By definition, “-x” is something that, when added with x, gives 0.

Extension: For vector and matrix, apply the operations to the elements 
the same way that addition and multiplication would normally apply 
(except that the calculations are all in GF(2)).

BSC and the Error Pattern
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Again, to transmit k information bits, the channel is used n
times. 

BSCx y

Encoder BSC

error pattern

k n

Its nonzero elements mark the 
positions of transmission error in y

Review: Block Decoding
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In this chapter, we assume the use of minimum distance 
decoder.

Recall
1. The MAP decoder is the optimal decoder. 
2. When the codewords are equally-likely, the ML decoder the same 

as the MAP decoder; hence it is also optimal.
3. When the crossover probability of the BSC p is < 0.5, 

ML decoder is the same as the minimum distance decoder. 

Also, in this chapter, we will focus 
less on probabilistic analysis,
but more on explicit codes.



Vector Notation
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: column vector

: row vector
Subscripts represent element indices inside individual 
vectors.

and refer to the ith elements inside the vectors and , 
respectively.

When we have a list of vectors, we use superscripts in 
parentheses as indices of vectors. 

 is a list of M column vectors
is a list of M row vectors

and refer to the ith vectors in the corresponding lists.

Linear Block Codes
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Definition: is a (binary) linear (block) code if and 
only if forms a vector (sub)space (over GF(2)). 

Equivalently, this is the same as requiring that

Note that any (non-empty) linear code must contain 0.

Ex. The code that we considered in HW4 is

Is it a linear code?

In case you forgot about the concept of vector space,…

f  and  then 

00000,01000,10001,11111

Linear Block Codes: Motivation (1)
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Why linear block codes are popular?

Recall: General block encoding 
Characterized by its codebook.

Can be realized by combinational/combinatorial circuit.
If lucky, can used K-map to simplify the circuit.

Linear Block Codes: Motivation (2)
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Why linear block codes are popular?

Linear block encoding is the same as matrix multiplication.
See next slide.
The matrix replaces the table for the codebook.

The size of the matrix is only bits.
Compare this against the table (codebook) of size bits for 
general block encoding.

Linearity easier implementation and analysis

Performance of the class of linear block codes is similar to 
performance of the general class of block codes.

Can limit our study to the subclass of linear block codes 
without sacrificing system performance.



Linear Block Codes: Generator Matrix
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For any linear code, there is a matrix

called the generator matrix
such that, for any codeword , there is a message vector 
which produces by

=

mod-2 summation

Note: 
(1) Any codeword can be expressed as a linear combination of the 

rows of G
(2)

Linear Block Codes: Examples
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Repetition code: 

Single-parity-check code: 

parity bit

Vectors representing 3-bit codewords
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Triple-repetition code Parity-check code

Even Parity vs. Odd Parity
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Parity bit checking is used occasionally for transmitting ASCII 
characters, which have 7 bits, leaving the 8th bit as a parity 
bit.

Two options:
Even Parity: Added bit ensures an even number of 1s in each 
codeword.

A: 10000010

Odd Parity: Added bit ensures an odd number of 1s in each 
codeword.

A: 10000011

Related Idea:



Even Parity vs. Odd Parity
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Even parity and odd parity are properties of a codeword (a 
vector), not a bit.

Note: The generator matrix previously 
considered produces even parity codeword

Q: Consider a code that uses odd parity. Is it linear?

Error Control using Parity Bit

20

If an odd number of bits (including the parity bit) are 
transmitted incorrectly, the parity bit will be incorrect, thus 
indicating that a parity error occurred in the transmission. 

Ex. 
Suppose we use even parity. 

Consider the codeword 10000010

Suitable for detecting errors; cannot correct any errors

Error Detection
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Two types of error control:
1. error detection
2. error correction

Error detection: the determination of whether errors are 
present in a received word.

An error pattern is undetectable if and only if it causes the 
received word to be a valid codeword other than that which 
was transmitted.

Ex: In single-parity-check code, error will be undetectable 
when the number of bits in error is even.

Error Correction
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In FEC (forward error correction) system, when the 
decoder detects error, the arithmetic or algebraic structure
of the code is used to determine which of the valid 
codewords was transmitted.

It is possible for a detectable error pattern to cause the 
decoder to select a codeword other than that which was 
actually transmitted. The decoder is then said to have 
committed a decoding error.



Square array for error correction by 
parity checking.
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The codeword is formed by 
arranging k message bits in 
a square array 
whose rows and columns 
are checked by parity 
bits.
A transmission error in one 
message bit causes a row 
and column parity failure 
with the error at the 
intersection, so single 
errors can be corrected.

[Carlson & Crilly, p 594]

Weight and Distance
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The weight of a codeword or an error pattern is the 
number of nonzero coordinates in the codeword or the error 
pattern.

The weight of a codeword is commonly written as .
Ex. 

The Hamming distance between two n-bit blocks is the 
number of coordinates in which the two blocks differ.

Ex. 

Review: Minimum Distance (dmin)
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The minimum distance (dmin) of a block code is the 
minimum Hamming distance between all distinct pairs of 
codewords.

HW4

dmin: two important facts
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For any linear block code, the minimum distance (dmin) 
can be found from minimum weight of its nonzero
codewords.

So, instead of checking pairs, 

simply check the weight of the codewords.

A code with minimum distance dmin can
detect all error patterns of weight w  dmin-1.

correct all error patterns of weight w  .

the floor function



dmin is an important quantity
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To be able to detect all w-bit errors, we need .
With such a code there is no way that w errors can change a valid 
codeword into another valid codeword. 
When the receiver observes an illegal codeword, it can tell that a 
transmission error has occurred. 

To be able to correct all w-bit errors, we need .
This way, the legal codewords are so far apart that even with w
changes the original codeword is still closer than any other 
codeword.

Example
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Consider the code

Is it a linear code?

dmin = 

It can detect (at most) ___ errors.

It can correct (at most) ___ errors.

0000000000, 0000011111, 1111100000, and 1111111111

Hamming codes
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One of the earliest codes studied in coding theory.
Named after Richard W. Hamming

The IEEE Richard W. Hamming Medal, named after him, is an 
award given annually by Institute of Electrical and Electronics 
Engineers (IEEE), for "exceptional contributions to information 
sciences, systems and technology“.

Sponsored by Qualcomm, Inc
Some Recipients:

1988 - Richard W. Hamming
1997 -Thomas M. Cover
1999 - David A. Huffman
2011 -Toby Berger

The simplest of a class of (algebraic) error correcting codes that 
can correct one error in a block of bits

Hamming codes: Ex. 1
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[https://www.youtube.com/watch?v=cBBTWcHkVVY]



Hamming codes: Ex. 1
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In the video, the codeword is constructed 
from the data by

where

This is an example of Hamming (7,4) code

The message bits are also referred to as the data bits or information bits. 
The non-message bits are also referred to as parity check bits, checksum 
bits, parity bits, or check bits.

Generator matrix: a revisit
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Fact: The 1s and 0s in the jth column of G tells which 
positions of the data bits are combined ( ) to produce the jth

bit in the codeword.

For the Hamming code in the previous slide,

p d p d p d d

d d d d

G

Generator matrix: a revisit
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From , we see that the j element of  the 

codeword of a linear code is constructed from a linear 
combination of the bits in the message: 

The elements in the jth column of the generator matrix become 
the weights for the combination. 

Because we are working in GF(2), has only two values: 0 or 1. 
When it is 1, we use in the sum.
When it is 0, we don’t use in the sum.

Conclusion: For the jth column, the ith element is determined from 
whether the ith message bit is used in the sum that produces the jth
element of the codeword . 

Parity Check Matrix: Ex. 1
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Structure in the codeword:

At the receiver, we check whether the received 
vector still satisfies these conditions via computing 
the syndrome vector:

y y y y y y y



Parity Check Matrix: Ex 1
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Intuitively, the parity check matrix , as the name suggests, tells 
which bits in the observed vector are used to “check” for validity of .
The number of rows is the same as the number of conditions to check 
(which is the same as the number of parity check bits).
For each row, a one indicates that the bits (including the bits in the parity 
positions) are used in the validity check calculation.

Structure in the codeword:

Parity Check Matrix: Ex 1
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Relationship between and .

Parity Check Matrix: Ex 1
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Relationship between and .

Parity Check Matrix: Ex 1
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Relationship between and .

(columns of) identity matrix 
in the data positions

(columns of) identity matrix 
in the parity check positions



Parity Check Matrix: Ex 1
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Relationship between and .

Key property:

Proof:

When there is no error , the syndrome vector 
calculation should give .

By definition, 

.
Therefore, when , we have .

To have for any , we must have .

Parity Check Matrix
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T
k n k

Systematic Encoding
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Code constructed with distinct information bits and check 
bits in each codeword are called systematic codes. 

Message bits are “visible” in the codeword.

Popular forms of G:

kk n k

k k n k

kk n k

n k

k

k

b b b

b b bx x x
n kx n kx nx

k

k k nk

k n

k

kx

b

b x

b

b x

b

b
x x kx

Parity check matrix
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For the generators matrices we discussed in the previous 
slide, the corresponding parity check matrix can be 
found easily:

T
k n k

kk n k

k k n k
T

n k

T
n k

Check:



Hamming codes: Ex. 2
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Systematic (7,4) Hamming Codes

Hamming codes
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Now, we will gives a general recipe for constructing Hamming 
codes.

Parameters:

number of parity bits

It can be shown that, for Hamming codes,

dmin = 3.

Error correcting capability: 

Construction of Hamming Codes

45

Start with m.

1. Parity check matrix H:
Construct a matrix whose columns consist of all nonzero binary 
m-tuples.
The ordering of the columns is arbitrary. 
However, next step is easy when the columns are arranged so 
that                      . 

2. Generator matrix G:
When                       , we have                                               .

m

T T
k km

Hamming codes: Ex. 2
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Systematic (7,4) Hamming Codes

Columns are all possible 3-bit vectors
We arrange the columns so that I3 is on 
the left to make the code systematic. 
(One can also put I3 on the right.)

Note that the size of the identity 
matrices in and are not the same.



Minimum Distance Decoding
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At the decoder, suppose we want to use minimum distance 
decoding, then

The decoder needs to have the list of all the possible codewords
so that it can compare their distances to the received vector .
There are 2k codewords each having n bits. 
Therefore, saving these takes bits.
Also, we will need to perform the comparison 2k times.

Alternatively, we can utilize the syndrome vector (which is 
computed from the parity-check matrix).

The syndrome vector is computed from the parity-check matrix 
.

Therefore, saving takes bits.

Minimum Distance Decoding
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Observe that

Therefore, minimizing the distance is the same as minimizing the weight of the 
error pattern.
New goal: 

find the decoded error pattern with the minimum weight
then, the decoded codeword is 

Once we know we can directly extract the message part from the decoded 
codeword if we are using systematic code.
For example, consider 

Suppose , then we know that the decoded message is .

Properties of Syndrome Vector
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From , we have

Thinking of as a matrix with many columns inside,

Therefore, is a linear combination of the columns of .

T T T
n

n k n k n

Hamming Codes: Ex. 2
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T

Note that for an error pattern 
with a single one in the jth
coordinate position, the 
syndrome is the 
same as the jth column of H.

Linear 
combination of 
the columns of H



We will assume that the columns of are nonzero and distinct.
This is automatically satisfied for Hamming codes constructed from our recipe.

When , we have .
When , we can conclude that .

There can also be that gives . 
For example, any nonzero , will also give . 
However, they have larger weight than . 

The decoded codeword is the same as the received vector.

When, (a pattern with a single one in the jth position)

we have the jth column of .

When the jth column of , we can conclude that

There can also be other that give . However, their weights
can not be 0 (because, if so, we would have but the columns of are nonzero)
nor 1 (because the columns of are distinct).

We flip the jth bit of the received vector to get the decoded codeword.

Properties of Syndrome Vector
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Hamming Codes: Decoding Algorithm
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For general linear codes, the two cases discussed on the previous 
slide may not cover every cases.
For Hamming codes, because the columns are constructed from 
all possible non-zero m-tuples, the syndrome vectors must fall into 
one of the two cases considered.
Hamming Codes: Decoding Recipe

Compute the syndrome for the received vector. 

If  , set .
If  ,

Determine the position j of the column of H that is the transposition of the 
syndrome.
set but with the jth bit complemented.

Hamming Codes: Ex. 1
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Consider the Hamming code with

Suppose we observe at the 
receiver. Find the decoded codeword and the decoded 
message.

Hamming Codes: The original method
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Encoding
The bit positions that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits.
The rest (3, 5, 6, 7, 9, etc.) are filled up with the k data bits. 
Each check bit forces the parity of some collection of bits, including itself, to 
be even (or odd). 

To see which check bits the data bit in position i contributes to, rewrite i as a sum of 
powers of 2. A bit is checked by just those check bits occurring in its expansion

Decoding
When a codeword arrives, the receiver initializes a counter to zero. It then 
examines each check bit at position i (i = 1, 2, 4, 8, ...) to see if it has the 
correct parity. 
If not, the receiver adds i to the counter. If the counter is zero after all the 
check bits have been examined (i.e., if they were all correct), the codeword
is accepted as valid. If the counter is nonzero, it contains the position of the 
incorrect bit.

[To be explored in the HW]



Codebook for the Hamming code in Ex. 1
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Note that 
Each bit of the codeword for 
linear code is either

the same as one of the message 
bits

Here, the second bit (x2) of the 
codeword is the same as the first 
bit (b1) of the message

the sum of some bits from the 
message

Here, the first bit (x1) of the 
codeword is the sum of the first, 
second and fourth bits of the 
message.

So, each column in the codebook 
should also satisfy the above 
structure (relationship).

Codebook for the Hamming code in Ex. 1
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One can “read” the 
structure (relationship) 
from the codebook.

From 

when we look at the 
message block with a 
single 1 at position ,  
then

the value of in the 
corresponding 
codeword gives 

Codebook for the Hamming code in Ex. 1
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One can also “read” from the 
codebook.
From 

when we look at the 
message block with a single 
1 at position ,  then
the corresponding 
codeword is the same as 

.

Checking linearity of a code
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Another technique for checking 
linearity of a code when the 
codebook is provided 
is to look at each column of the 
codeword part.
Write down the equation by reading 
the structure from appropriate rows 
discussed earlier.

For example, here, we read 
.

Then, we add the corresponding 
columns of the message part and 
check whether the sum is the same 
as the corresponding codeword
column.
So, we need to check n summations.

Direct checking discussed previously 
consider summations.



Checking linearity of a code
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Here is an example of non-
linear code.
Again, we read 

.
We add the message columns 
corresponding to , 

We see that the first bit of the 
13th codeword does not 
conform with the structure 
above.
The corresponding message is 
1100.
We see that and are 
codewords but 

is not one of the 
codewords.

Implementation
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Linear block codes are typically implemented with modulo-2 
adders tied to the appropriate stages of a shift register.

where



Interleaving
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Conventional error-control methods such as parity checking are 
designed for errors that are isolated or statistically independent 
events.
Some errors occur in bursts that span several successive bits.

These errors tend to group together in bursts. 
Thus, they are no longer independent.
Examples

impulse noise produced by lightning and switching transients
fading in wireless systems 
channel with memory

Such multiple errors wreak havoc on the performance of 
conventional codes and must be combated by special techniques. 
One solution is to spread out the transmitted codewords.
We consider a type of interleaving called block interleaving.

Interleaving: Example
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Consider a sequence of m blocks of coded data:

Arrange these blocks as rows of a table.
Normally, we get the bit sequence simply by 
reading the table by rows.
With interleaving (by an interleaver), transmission 
is accomplished by reading out of this table by 
columns.
Here, blocks each of length n are interleaved to 
form a sequence of length n.

The received symbols must be deinterleaved (by a deinterleaver) prior to decoding.

Interleaving: Advantage
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Consider the case of a system that can only correct single errors. 
If an error burst happens to the original bit sequence, the system 
would be overwhelmed and unable to correct the problem. 

However, in the interleaved transmission, 
successive bits which come from different original blocks have been 
corrupted 
when received, the bit sequence is reordered to its original form and 
then the FEC can correct the faulty bits 
Therefore, single error-correction system is able to fix several errors.

original bit sequence

interleaved transmission

Interleaving: Advantage
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If a burst of errors affects at most consecutive bits, 
then each original block will have at most one error.
If a burst of errors affects at most consecutive bits 
(assume ), 
then each original block will have at most errors.
Assume that there are no other errors in the transmitted 
stream of n bits.

A single error-correcting code can be used to correct a single 
burst spanning upto symbols.
A double error-correcting code can be used to correct a single 
burst spanning upto 2 symbols.




